A Fully Nonlinear Version of the Incompressible Euler Equations: The Semigeostrophic System

نویسنده

  • G. Loeper
چکیده

The semi-geostrophic equations are used in meteorology. They appear as a variant of the two-dimensional Euler incompressible equations in vorticity form, where the Poisson equation that relates the stream function and the vorticity field is just replaced by the fully non linear elliptic Monge-Ampère equation. This work gathers new results concerning the semi-geostrophic equations: Existence and stability of measure valued solutions, existence and uniqueness of solutions under certain continuity conditions for the density, convergence to the incompressible Euler equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 5 A fully non - linear version of the incompressible Euler equations : the semi - geostrophic system

This work gathers new results concerning the semi-geostrophic equations: existence and stability of measure valued solutions, existence and uniqueness of solutions under certain continuity conditions for the density, convergence to the incompressible Euler equations. Meanwhile, a general technique to prove uniqueness of sufficiently smooth solutions to non-linearly coupled system is introduced,...

متن کامل

Lagrangian Solutions of Semigeostrophic Equations in Physical Space

The semigeostrophic equations are a simple model of large-scale atmosphere/ocean flows, where ’large-scale’ is defined to mean that the flow is rotation-dominated, [4]. They are also accurate in the case where one horizontal scale becomes small, allowing them to describe weather fronts and jet streams. Previous work by J.-D. Benamou and Y. Brenier, [2], and Cullen and Gangbo, [5], and Cullen an...

متن کامل

. A P ] 7 A pr 2 00 5 Quasi - neutral limit of the Euler - Poisson and Euler - Monge - Amp è re systems

This paper studies the pressureless Euler-Poisson system and its fully non-linear counterpart , the Euler-Monge-Ampère system, where the fully non-linear Monge-Ampère equation substitutes for the linear Poisson equation. While the first is a model of plasma physics, the second is derived as a geometric approximation to the Euler incompressible equations. Using energy estimates, convergence of b...

متن کامل

Quasi-neutral limit of the Euler-Poisson and Euler-Monge-Ampère systems

This paper studies the pressureless Euler-Poisson system and its fully non-linear counterpart, the Euler-Monge-Ampère system, where the fully non-linear Monge-Ampère equation substitutes for the linear Poisson equation. While the first is a model of plasma physics, the second is derived as a geometric approximation to the Euler incompressible equations. Using energy estimates, convergence of bo...

متن کامل

A geometric approximation to the Euler equations : the Vlasov-Monge-Ampère system

This paper studies the Vlasov-Monge-Ampère system (VMA), a fully non-linear version of the Vlasov-Poisson system (V P ) where the (real) Monge-Ampère equation det ∂ Ψ ∂xi∂xj = ρ substitutes for the usual Poisson equation. This system can be derived as a geometric approximation of the Euler equations of incompressible fluid mechanics in the spirit of Arnold and Ebin. Global existence of weak sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2006